KiteGen Power Wing

comments Comments Off
By stekgr, September 12, 2014 9:10 pm

The first model of the “Power Wing”, a wing specially designed for the production of energy, has been finally released by the KiteGen laboratories. We show you a preview.

The availability of a “Power Wing” is the main enabler for the mass production of low-cost energy from tropospheric wind.

The kite sports are made of very light materials but are not designed to produce great powers. The concept of “Power Wing” never existed on the market up to date and all the HAWE actors, after having successfully tested the production of energy (up to a few tens of kW) by using sport kites (first KiteGen in 2006), have had to deal with the lack on the market of a kite capable of resisting forces exceeding few tens of kW. This led to the difficult choice between developing a small, sometimes movable, power system, and designing a new, efficient, lightweight but strong wing, able to withstand megawatts forces.

This dilemma has of course also touched KiteGen, which eventually made the second choice. That choice appeared to us as obliged: in fact, to give up the Power Wing concept, would have meant confining the technology to a niche of small power systems. These systems are unable to compete with renewable sources – already available on the market and widely tested – since the scale factor, in tropospheric wind energy, strongly hits the performances of the systems, by determining their relative competitiveness, a main success factor, given also the novelty of the HAWE technologies.

The KiteGen Power Wing, therefore, represents a quantum leap in the field of tropospheric wind energy, and allows the shift from the experimentation of low power prototypes towards a new generation of megawatt class machines that, thanks also to the modular design and the “farm” deployability, allows the system to target the GW class, thus competing in the largest segment of the energy market.

The choice of the market segment in which the systems should position, is not only relevant for economic purposes but also from the point of view of its potential contribution to adverse the climate change and the depletion of energy, which is worsening the worldwide socio-economic crisis and stimulating access to dirtier resources, such as coal and shale.

The small systems would be confined to niche markets and their contributions to social and environmental issues would be  in fact limited. The comparison of turnover and produced energy by micro/small wind turbines and big size wind generators is iconic.

The “Power Wing” is therefore an inescapable issue and KiteGen faced it by getting a first major success, which has required time and resources.

Initially, the effort has been directed to settle the intellectual property issues, with several patents describing the “Power Wing” key features and the auxiliary systems. Then we focused on the design, by deploying the most quoted tools for computational fluid dynamics on powerful parallel computing systems.

In the meanwhile the most suitable materials and composites have been selected and finally it has been invested on an industrial plant able to deal with the entire supply chain, from material procurement to the finished product.

A robotic line has allowed the production of 20 tons of molds used for manufacturing and curing the wing segments, which are made of composite materials. Even the production of accessories (ailerons and bulbs) is done by robots, while all assemblies and processes are labor intensive and involve highly qualified staff.

The result, as can be seen from the picture below has the dimensions of the wing of a large airliner but is lightweight and semi-rigid. The wing is formed by 9 ashlars hinged together by flexible joints, thanks to which it can easily change configuration in order to vary the wing lift factor.

Our readers that look always forward to news from KiteGen and are often disappointed by the lack of new footage of flights with sport kites (which are more and more produced by our competitors – see review) will finally understand that the time from the presentation of the latest movies is not spent in idleness but, on the contrary, led to opening a new perspective of being able to produce great powers from tropospheric wind.

The road to the refinement and optimization of the Power Wings is still long and can be compared to that covered by the blades of wind turbines (which are kind of wings, by the way), with substantial resources committed to research and development and many universities and companies involved, but the path to tropospheric wind machines of the MW class is definitely traced.

KiteGen @ the Green Week Conference 2013 – Bruxelles 4th-7th June 2013

comments Comments Off
By marcello, May 31, 2013 2:32 pm

KiteGen will participate at the Green Week Conference 2013 with a stand (n. 7) entitled “When air turns into energy”, in the EU DG RTD area.

The event, this year  dedicated to the air, will be held in Bruxelles, at the Egg Center, rue Bara 175.

Ironically, the KiteGen stand will be next to ALCOA’s one…

We would be pleased to meet there everyone interested in our project.

Link to the event.

KiteGen and Alcoa Updates

comments Comments Off
By stekgr, September 21, 2012 3:53 pm

Kite Gen Research has become the third group to express interest regarding the aluminum smelter located in Sardinia run until today by Alcoa.
In Italy we often hear on the news the name of this company, which sadly is associated with the risks of closure and the consequent social demonstrations of its workers.
The area where Alcoa operates is one of the poorest in Italy, where unemployment rate is one of the highest, while the root cause of the problems behind its past and its future are strictly connected with energy prices. The combination of these factors, together with the recent academic studies published by Nature Climate Change (Geophysical Limits to Global Wind Power) inspired KiteGen in proposing an alternative solution to this situation.
On September 10th KiteGen sent an offer to the Italian government and the relative parties involved (Sardinian Regional Government, Alcoa, Minister of Development, Etc): KiteGen proposed the implementation of its “Industrial Program 50 Machines” (currently also under negotiations with other parties) for the production of energy of the Alcoa’s smelter from what it will be the world’s first large scale tropospheric wind farm.


KiteGen received official interest from Alcoa and from the president of the Sardinian Region, Ugo Cappellacci.
On Monday the 17th a delegation from KiteGen headed by its president Massimo Ippolito was hosted by the president of the Region in Cagliari to discuss the contents of the proposal.

KiteGen would like to point out that the meeting has been positive, the Regional authorities present in the meeting together with the academic presence of Dott. Damiano from the Cagliari University, were competent, prepared and opened to the views shared by KiteGen.
The two steps outlined in the documents posted on the 10th of September were discussed and there seemed to be concrete interest from the Sardinian authorities.

KiteGen offers its expertise and its innovation for implementing a short-medium term solution to the Energy issue that Alcoa most of all, but all industries in general have to face sooner or later. KiteGen solution is different from the temporary energy price agreement that might keep the smelter open in the short term. KiteGen wants to provide clean, cheap and abundant renewable energy, the only remedy that could solve this and other difficult situation in Italy, Europe and Globally.
The cost of energy is one of the main reasons why the Sardinian plant has found it difficult to compete and could be sold or closed. A relatively big Kitegen Stem wind farm at regime (200 Stems= 600 MW) could provide continuous power to the smelter at 20 €/MWh, a price lower than the one required by Alcoa to be competitive, 25 €/MWh; lower than the one that Alcoa benefitted from bilateral agreements in the last 15 years of production, roughly 33 €/MWh; and ¼ of the average market value of electricity of 80€/MWh.

Furthermore, if KiteGen will be included in the Alcoa “solution” the smelter might benefit from energy generation through renewable source: this would also contribute in cutting CO2 emissions for the plant and therefore reducing or even save up and trade the allowance assigned by the ETS to the smelter (Emission Trade Scheme) which comes in force from next year.

We hope that the authorities, both Regional and National will soon understand the potential of this source (KiteGen is merely a technology for extraction, the High Altitude Winds are the massive “Oil Fields” above our heads), also because KiteGen would be happier to develop first its technology on the Italian territory and in a social context of real need and only after this important Italian test bench start the commercial and industrial proliferation in other areas.

One of the strengths of the KiteGen proposal is that politicians are now searching for a quick solution, based on energy price subsides needed to keep the smelter on.  Those subsidies, even if allowed by EU, could be granted only for a short time, or in any case they do not represent a long term solution, rather it is just a way to gain time and mitigate the problem until a solution “falls from the sky”.  Whoever the new owners of the plant may be,  they will find it hard to compete without new subsidies, and in a climate of recession the chance for new allowances would be harder.  The KiteGen solution (which literally comes from the sky), could be rapidly deployed during the short term EU allowance that Italian Government is likely to obtain and it will gradually eliminates the need for new energy price agreements, helping securing the future of the Portovesme plant and hundreds of related jobs.

Kite Gen asks the government to apply for EU funds of 1.3 billion euros ($1.7 billion) available for innovative projects, to demonstrate the feasibility of the KiteGen Stem technology at the scale required for the Sardinian plant, and hopes the authorities will not lack such a strategic view of the problem, considering also that there are already so many investments in other directions less promising than the one proposed by KiteGen.

In our view the risks are outplayed by the great opportunities of a competitive and fully sustainable technology that only scratches the greatest source of kinetic energy that our planet has. Is it also your view?

Stefano

Global Warming & Global Power? Wind can power and even cool down the world!

comments Comments Off
By stekgr, September 21, 2012 11:22 am

Translated from Massimo Ippolito’s post:

On September 9th NATURE CLIMATE CHANGE Journal published a paper by Ken Caldeira, Kate Marvel, Ben Kravitz containing further confirmation of KiteGen positions and other brand new information of great importance. The following day, as a logical consequence and necessary act, we sent two letters to the Italian government with the proposed solution for ALCOA. Maybe it was an act too confident about the immediate impact of the NCC’s work and the good media coverage obtained by the article[Short video that introduces the study].

We counted on the contents of the scientific paper, full of meaningful information, in order to provide support to the economic arguments regarding the natural source and our technology. We thought that the Italian Minister of Economic Development Corrado Passera would jump up from his chair saying “Here’s the solution!”, instead, so far, all we heard through journalists is a skeptical comment.

Now let’s try to in this article to analyze the work of Caldeira, Marvel and Kravitz maybe step by step in several posts, of course well-reasoned comments from the readers are welcome.

Climate Change and Global Warming/Cooling?

The blog linked here (Italian), written by Physics and Mathematics professor Marco Pagani, identified and highlighted an aspect of the NCC work that turns out to be a novelty, perhaps a safety anchor of great relevance in relation to climate change/global warming. The graph analyzed by Pagani explains how it is possible to extract enough energy to power humanity with negligible changes in atmosphere temperature, while it is even possible to cool down the atmosphere if we could extract roughly 430TW (20 times humanity’s need) from the wind. The essential point is that Caldeira et all, clearly state that we can use as much wind power as we want, with negligible consequences to the climate, and that the only limits to wind energy technology might be relative to their costs and efficiency. While an extensive usage of this source might even be a solution to global warming.

How much can we get from wind?

Beside of climate change discussions, according to scientific publications and substantially confirmed by this latest paper, above Italy flows a total power whose magnitude is around the 100 TW. Let set 1TW as maximum extractable power from Italy, or an arbitrary 1% of what naturally flows, for the pleasure of round numbers and in order to offer a significant metaphor. Saudi Arabia produces 12.5 million barrels of oil per day, 521,000 barrels per hour, the thermal power equivalent of about 1 TW, equivalent to what hypothesized that we can extract from the Italian tropospheric wind while limiting climatic changes. This is great, isn’t it? Check the calculations if you do not believe it, they are fairly easy.

Technically we also have so much solar radiation, but to collect it we need devices deployed on the territory, while for wind power the photovoltaickinetic panel is the atmosphere itself! Already naturally deployed and maintained, KiteGen is only the PTO that collects the energy collected from the atmosphere.

I would like to highlight another graph showing in particular the advantage of tropospheric wind.

KEE vs drag area graph

The blue line is attributable to KiteGen, the red line is attributable to wind turbines. The vertical axis indicates the size of the surface that intercepts the wind, compared with the rate of extraction of kinetic energy on the abscissa.

In order to draw a power of 480TW, each kilometer cube of the entire surface of the planet must have a “classic” wind turbine that catches a wind front of 10000square meters, one hectare, while in the tropospheric wind are sufficient equivalent of 23 square meters for km cube.

The tropospheric wind, however, is not limited to cubic kilometer near the ground, but the study uses ideally the whole atmosphere, and to clarify the calculation of the equivalence of the surface of 23 square meters must be multiplied by the number of stacked cubes, typically 10, corresponding to the entire troposphere.

So a wing brushes 230 square meters in altitude would be equivalent to a wind turbine that works against a wind surface of a hectare.

We said “wing brushing a surface”, but how big must the wing be?

A simplified method is to divide the area to be brushed with the same aerodynamic efficiency of a wing with efficiency 10 so that we will have an area of ​​23 square meters equivalent to a 2.5 MW classic wind turbine typically “brushing” one hectare of wind.

The practical and technological interest is to obtain the desired power in an ideal compromise between workload and surface, which is why we chose the KiteGen Stem flying below 2000 meters with wings up to 150 meters of surface.

The fluidity of data and KiteGen performance, which depend heavily on configuration decisions: the wing, the altitude and the wind speed; are obviously one of the things that annoy people used to precise specifications, these people instead of enjoying the freedom of modulation and opportunities they tend to be cautious over the whole project, probably the view also of some government consultant.

In fact, in this latest media coverage, as I said, the only comment we heard from the Ministry that should support us (Innovation & Economic Development) was a very general kind of skeptical comment on KiteGen technology. Personally, it seems that politicians are no longer able to think independently without the lobbies that hound them constantly. Those sectors who has not created a lobby is excluded from all reasoning and opportunities, even if it is for the benefit of the country and the community.

But if it would be clear to everyone that we have the equivalent of a Saudi Arabia within the national territory, would we still be asking questions at the level of bankers, executives, politicians, ministers regarding the particular system of drilling to extract that energy and how to achieve it?

No! please, is complex, just trust all the patents “Granted”, the awards and the 12 proposals in response to calls for national and regional technological innovation, awarded funding but unfortunately still without coverage. Instead put us in a condition where we can keep working and we will solve all of your doubts.

Interactive Presentations: The Yo-Yo idea

comments Comments Off
By stekgr, July 24, 2012 2:46 pm

Dear KiteGen followers,

Below you can find one of our interactive presentations about different aspects of KiteGen technology. This particular on describes the origins of the idea and how the KiteGen STEM works.

Enjoy!

There are several of these work in our Webinars section (password protected), to access that section contact us.

to visualize it you might require Adobe Shockwave

Presentations developed by Ing. A.Papini

High Altitude Wind Energy from David North’s (NASA) point of view

comments Comments Off
By stekgr, July 18, 2012 12:54 pm

Image credit phis.org: The system developed at Langley flies a kite in a figure-8 pattern to power a generator on the ground

Originally written by Andrea Papini and Eugenio Saraceno

As our readers already know, one of the most titled teams that recently joined the at high altitude wind energy sector is that of NASA, which at the Langley Research Center in Virginia is developing its own project. According to David North, engineer of the team, in an article reported by phis.org:

“most tower turbines are about 80 to 100 meters (roughly 300 feet) high, which is pathetically down in the boundary layer of Earth. The boundary layer is where friction from Earth’s surface keeps the wind relatively slow and turbulent. The sweet spot for wind energy starts around 2000 feet up (600m). To use wind at that altitude to generate electricity, you’d have to build a turbine tower taller than the Empire State Building. Or you can fly a kite.”

Read more at: http://phys.org/news/2012-07-electricity-air.html#jCp. ”
Or the older article about the early stage of the NASA research http://phys.org/news/2010-12-green-energy-air.html#nRlv

The Langley Research Center is the only one, so far, who has also left also the sensors on ground. This choice derives from extreme simplification of the flight control, possible due to awareness of not having to create a commercial product yet. In essence the kite is “observed” by a special camera which communicates to a control system based on a shape recognition technology, similar to those adopted by some recent video games with which they can interact by means of the movements of the body (eg MS Kinetics).

We can say that lately, as well as KiteGen, other groups have reported being able to run the automatic control of the kite:

SkySails Marine

FESTO

NASA Langley (in March).

TuDelft (In June)

( plus at least 5 other groups who are still working on that)

However, only KiteGen and SkySails are now able to perform take-off and landing automatically.

We are pleased to note that some of the concepts on which KiteGen is been insisting for years, are now being repeated by NASA:

- Flying the kite only reduces the weight (and therefore the cost) of the generator;

- Flying only the tip of the existing wind turbines, which are the parts of the blades that produce 90% of the total energy.

- The power depends on the cube of speed, and therefore it is better to have more efficient kites/wings (contrary to what is being developed by SkySails so far).

Related post ( March 2012)

ENERGY STORAGE UNDER KITEGEN PERSPECTIVE

comments Comments Off
By stekgr, June 20, 2012 4:03 pm

Originally written by Massimo Ippolito

An insightful analysis, as always, by Domenico Coiante argues about renewable energy issues and the need for daily and seasonal storage.

It seems a good opportunity to introduce and clarify the opportunities offered in this area by the largest source of concentrated energy on the planet, the tropospheric wind.

The graph shown here comes from the methodology section of the “atlas of the winds of high altitude” of Cristina Archer and Ken Caldeira. It is a sophisticated representation which expresses a competitive or collaborative comparison between the possible accumulation of traditional systems, and the ‘opportunities to exploit the naturally stored energy in the geostrophic wind. Furthermore, it introduces “a trick” to get an annual availability of 99.9%, or 8751 hours a year guaranteed, far higher than any traditional source and nuclear power plants.

My suggestion is to devote sufficient time to decipher the original document, because the implications are of extreme importance. On this graph I added the indications referred to an example of KiteGen 3MW to make it easier to understand the logic. Note that the KiteGen Stem machines that fit in the example should be equipped with wings of 150 square meters with an equivalent aerodynamic efficiency of over 20.

The winds that envelop the planet can be seen as a huge “flywheel” of energy storage. The atmosphere has a total mass of 5 million billion tons, 5 * 10 ^ 18 kg, that flow with an average speed as to bring the total of 100,000 terawatt-hours of energy accumulated. To provide a comparison, this figure corresponds to the energy needs of the current activities of the human race for over a year, but with the advantage that this massive accumulation is permanently restored by the photothermal solar dynamics.

While the photovoltaic panels must be deployed on the territory in order to minutely collect the energy dispersed, KiteGen instead, is the PTO of this great ” photovoltaic photomechanical panel” already naturally established and maintained by the atmosphere itself. This panel has collected energy in the kinetic form, which is a noble form, and it is therefore available for an efficient electrical conversion.

In a specific place, the example is referred to the New York area, the KiteGen generator can reach and pick up energy from this flow, with the probability of finding it powerful enough to produce power at rated power for 68% of the time, an equivalent already amazing of about 6000 hours per year. However, there is a limitation that does not depend on the flow of the wind fading but simply by the fact that it changes cyclically and erratically latitude.

So what is the idea that the diagram shows to push the tropospheric wind up to a 95% availability or even to a 99.9%? Simple enough, you need two generators located throughout the area at a distance sufficient to have at least one hit by the wind flow. The two generators are to be considered as a single system that will double the need for 68% of the time, but that will give a guarantee of delivery of the nominal value of one (of course this will cost twice as much).

In the chart, a comparison is made with equivalent and hypothetical electric storage systems, to achieve the same result of the two generators spaced.

If we assume a cost of electrochemical accumulation of 1 € / Wh, a point I have shown in the figure (b) it suggests 34.5 MWh. From this we get 34.5 million euro only for the storage batteries necessary for carrying out the service and bring availability to a 95%, cost in the order of magnitude of more than 10 times compared to the brilliant idea of having a spatial distribution of tropospheric generators.

What do we get from these reflections?:

1) The intermittent supply that plagues conventional wind and solar can be successfully overcome with the tropospheric wind; attributing the exclusive of the baseload on thermal plants is no longer correct.

2) The economic balance of this double facility can easily sustain the redundant generators as it can count on 68% + 68% + 32% of hours of availability, which would correspond to 11560 hours / year equivalent.

3) In case of sufficient spatial distribution of KiteGen Stem farms, or KiteGen Carousel, these reflections will lose their special value, since the effect of redundancy is achieved inherently.

4) The redundancy would lead to have an excess of potential output, but the KiteGen are easily and quickly adjustable by means of a central coordination, providing a precise adaptation to the demand curve.

5) The graph refers to the New York area, but the orographic influence that slow the winds fades as we go at higher altitudes, making it a good example for most of the globe.

2nd OPEN DAY KiteGen/SOTER

comments Comments Off
By stekgr, June 5, 2012 2:01 pm

The 2nd OPEN DAY KiteGen Sunday is been confirmed for the 24th of June 2012. It is organized by SOTER (SOciety for the Transition to REnewable Energy), in collaboration with the municipality of Sommariva Perno (CN ). In a few weeks of activity, SOTER gathered over 40 members who have already contributed giving financial and professional support.
The next OPEN DAY will allow to all those interested in supporting the KiteGen project, to recognize the state of the art of the technology and have a first-hand opportunity to visit the test plant, learn more about KiteGen and energy issues. The KiteGen team will be there to  answer to questions and curiosity of the visitors. The invitation is addressed in particular to all those  interested in energy, global warming and the economic crisis, to those that feel the importance of the project to the environment and the world’s transition to renewable energy and are willing to contribute to it personally.
Kitegen is indeed a project that has the potential to produce large amounts of clean energy at low-cost and even lower environmental and landscape impact. During the day SOTER will explain the reasons for his commitment to the project, the objectives proposed and ongoing initiatives.
To the visitors will be also presented the business plan for the first industrial batches of machines. We look forward to welcome you to next the OPEN DAY.
Event program:

The meeting will take place in Sommariva Perno (CN) at the Library Hall Civic Square in Europe and subsequent transfer to test plants KiteGen.
Hours 9.00/9.30 Arrival of participants
9.30 am Start project presentation. Discussion.
11.00 am Presentation of the SOTER initiative. Questions / Answers.
11.30 am End of the presentation. Transfer to test plants KiteGen (5 min) and visit to the plant.
13.00 hrs End of the meeting (optional lunch with the KiteGen team)
It is recommended to register by phone or email to soter@kitegen.com

(+39)   011 9415745
(+39)   348 0194810

The Success of the recent Open Day (Sunday 13th of May)

comments Comments Off
By stekgr, May 22, 2012 11:21 am

Last Sunday (13th of May) KiteGen hosted an Open Day for followers, and actual or future investors.

The event had 2 primary goals:

1) Show the state of the art of the technology, and perform a quick demonstration.

2) Launch officially the new financial initiative that collects small and medium investors that want to help the KiteGen’s development; SOTER srl

Those who attended the Open Day had the pleasure to see the KiteGen Stem in operation after a detailed presentation about Energy issues in general a quick history of the KiteGen “evolution” until present day.

The importance of the Open Day lies in the possibility of showing live feeds of the state of the art, that at this stage is dedicated to flight-tests, single components tests, single modules tests, etc.. The weather condition of the the day have also helped appreciating the high level of automation that has been achieved so far, in particular reference to the Stem movements. In fact, in the following video you can appreciate a “semi-automatic” take off procedure.

Click For Video Link

Click for Video Link

All the movements of the Stem and (those of the Manipulator) that you have seen in the video were completely automatic. What was manual was the control of the drums ( as the on-board electronics were not mounted). The movement of the Stem are based on the forces acquired by the sensors mounted on it, which reacts and follow in real time the forces transmitted by the wing. During the next trials the wing will be equipped with the on-board electronics (which contains numerous particular sensors) which measure the position and velocity and transmit it to the computer that will control the trajectory, and the consequent actions of the ropes according to the main targets of safety procedures, yo-yo cycle and optimization of energy production.

There is still work to do to make fully automatic flight, but the excellent work done so far on the software to manage the stem movements realized by Massimo Ippolito, Paolo Marchetti and Angelo Conte allows us to be confident on the future successes.

As you can guess the next step will be to accomplish these tasks and increase the power extracted from the wind in order to maximise the performances of the kite.

About SOTER
The Open Day was also dedicated to presenting the activities of Soter srl, company that holds an important share of KiteGen Research and that is exclusively dedicated to support the KiteGen project. KiteGen Research (through SOTER) is in fact now open to new investors that believe like we do, that KiteGen will be a winning technology for the exploitation of the high altitude winds, the new energy sector that will be key to the necessary transition towards a renewable source of energy in economical competition with fossil fuels sources.

Other Open Days will be organized very soon (24th of June)
Contact us for more information.

invest(at)kitegen.com
soter(at)kitegen.com

You can download the video from here

The Attendants of the Open Day together with the KiteGen Team

The Manipulator

comments Comments Off
By stekgr, May 7, 2012 10:30 am

Click For Video Link

Here a short explanation of one of the key components of the KiteGen Stem: The Manipulator

The “manipulator”, so nicknamed because its movements resemble the movement of a human wrist that controls the orientation and position of the kite from the top of the STEM. The distance between the two long antennas vary depending on the needs of the control software and its main function is to assist the take-off and landing manoeuvres.

In standby position, (with the kite hanging from the stem like a hammock) without the manipulator the kite tends to twist on itself and therefore blocking the take off manoeuvres, while keeping the antennas open it is easier to keep the kite open and aligned for the take-off. Taking off with the manipulator helps the air to be channelled in the kite and then closes with extreme speed. Once the kite is in the air the two antennas are closed and aligned to the Stem axis and its presence becomes imperceptible.

Each of the antennas is made in Kevlar/carbon and it is sensorised on 2-axis for the pull of the rope that passes through them. The system is capable to feel the forces in play and react in accordance to these inputs, so that in a situation with open antennas where the kite has just been launched, the pull of the ropes transmit a signal to the motors of the manipulator which react and closes automatically.
The two motors at the base of the stem manage the operating levers of the antennas through a long “push-pull” bowden system (similar to the mechanical principle of a bicycle’s brake). During the landing phase the system again spread apart the antennas facilitating the stability of the kite in its descent.

Lastly the sensitivity of the two antennas helps the whole system in terms of force control and positioning, similarly like the last portion of a fishing rod.

The manipulator, now in its fifth version, is a working reality of the concept idealized by M.Ippolito and reproduced in the model presented in various occasions

You can also download the video from here

KiteGen Model realized in 2008


Panorama Theme by Themocracy